首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   11篇
  国内免费   29篇
化学   306篇
晶体学   1篇
力学   4篇
综合类   4篇
数学   14篇
物理学   136篇
  2023年   9篇
  2022年   17篇
  2021年   23篇
  2020年   22篇
  2019年   16篇
  2018年   10篇
  2017年   18篇
  2016年   25篇
  2015年   19篇
  2014年   21篇
  2013年   25篇
  2012年   27篇
  2011年   21篇
  2010年   20篇
  2009年   24篇
  2008年   26篇
  2007年   19篇
  2006年   20篇
  2005年   13篇
  2004年   17篇
  2003年   20篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有465条查询结果,搜索用时 96 毫秒
1.
以玉米秸秆为研究对象,经过2%硫酸预处理后,利用果胶酶、β-葡萄糖苷酶、纤维素酶三种酶协同酶解,以提高玉米秸秆的酶解产糖量。结果表明:当酶解时间为48h,果胶酶、β-葡萄糖苷酶、纤维素酶分别为45U/mL、30U/mL、60U/mL时,葡萄糖、木糖和酶水解得率分别为67.83%、3.25%、73.65%,相比纤维素酶单一酶解的葡萄糖、木糖和酶水解得率分别提高了65.04%、20.82%、65.06%。分步糖化发酵5天后,相比单一酶解发酵乙醇含量提高了72.5%。说明利用三种酶复合处理,能明显提高酶解产糖量。研究结果为玉米秸秆转化为可发酵糖技术的研究提供重要参考。  相似文献   
2.
In this paper, we studied commercially available precipitated rice husk silica (RHS) with conventional precipitated silica, which has nearly the same surface area, and replaced part of the carbon black with RHS and conventional silica in a basic tread formulation. All formulations were mixed with the same amount of filler during the study. Silica was used at 15, 30 and 50 phr loading, and part of the carbon black was replaced by silica. Compound curing characteristics, physical properties, rebound resilience, heat generation, abrasion loss, dynamic properties and morphology were analyzed. The results indicated that RHS demonstrated compound properties comparable to those of conventional silica. As part of the carbon black was replaced with conventional silica, a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta were observed with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA analysis. We found the same trend when replacing part of the carbon black with RHS, such as a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA. This sustainable material could be used to replace conventional silica in tire compounding, as well as to replace a portion of carbon black with RHS for improved heat build-up, rolling resistance, and abrasion loss.  相似文献   
3.
《印度化学会志》2023,100(5):100982
Crystalline nano silica (SiO2) was synthesized using a cost-effective eco-friendly method from agricultural waste material like rice husk. Polymer nanocomposite has been prepared using the sol-gel technique from crystalline nano silica using PVA as a polymer binder. Thermal analysis measurement is employed to investigate thermal stability. The XRD analysis shows the crystalline nature of silica is revealed to have characteristic peaks of SiO2. The particle size was evaluated using Schererr's formula and found to be in the range of 21–31 nm. FTIR measurement shows the presence of O–Si–O (silane) bond formation. The PL measurement shows broad excitation prominently in the visible region. In the XRD pattern, a major peak of the Nanocomposite is observed at an angular position of 19.5° degree, which is more prominent than that of the PVA with the addition of 0.2 wt percent Nano silica to the PVA composite. SEM provides information on homogeneous distribution. This could be beneficial in terms of higher mechanical qualities as well as multifunctional properties. By hydrogen bonding, the PVA molecules are strongly linked to each SiO2 nanoparticle as measured by FTIR. The stability of materials is confirmed by Zeta Potential and DLS. In the photoluminescence property of SiO2-PVA crystalline Nano silica composite is excited using a radiation wavelength of 200 nm. The indirect bandgap was determined to be 4.28 eV which could be attributed to the 1100 °C annealing temperature. Such materials may be used as a semiconductor material obtained from a direct natural source, rice husk. Thus, in the present research structural, physical, and optical properties of crystalline nano silica and its polymer composite are explored, which leads us to prepare technological grads material from agricultural waste for varied applications including Agriculture to medical science.  相似文献   
4.
A bio-catalyst made of natural resources, such as Carica papaya latex, is very challenging for nanoparticle separation. In addition, differences in thermal conditions between nanoparticles affect the movement of substances in the separation process. The study experimentally investigated the role of Carica papaya latex bio-catalyst and thermal shock in water on synthesizing rice husk (RH). The synthesis retained the Mg and C elements attached to SiO2, which were generally neglected during the process. The study's objective was to evaluate the effectiveness of biocatalysts and thermal effects on the separation of Mg-SiO2-C from rice husk carbon nanoparticles (CNPs-RH). The research involved various treatment processes, such as RH pyrolysis in obtaining charcoal, High energy milling (HEM) to have carbon particles, and washing to get nano-sized carbon particles. The bonding of elemental compounds to rice husk carbon particles (CPs-RH) was released using NaOH and coagulation using a bio-catalyst. Coagulated CPs-RH was injected into water at a temperature of 60–70 °C to have a thermal shock effect for H2O clusters in Na+ and Mg2+ ions attached to the surface of the nanoparticles. Several tests were carried out, such as the SEM-EDX, TEM, XRD, and FTIR tests, to investigate the two nanoparticle clusters formed up to the nanometer scale. The results indicated that CNPs-RH nanoparticles consist of spherical particles with a diameter of 1.2 nm, while Mg-SiO2-C nanoparticles have a diameter of 0.6 nm. Both are classified as amorphous. Based on the FTIR test, CNPs-RH is hydrophilic, while Mg-SiO2-C is hydrophobic. Thermal shock in water strengthens the ion's mobility, increasing the interfacial dipole forces between nanoparticles and accelerating the separation process.  相似文献   
5.
This study was conducted to analyse structural changes through scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) after alkaline pretreatment of wheat straw for optimum steaming period. During the study, 2 mm size of substrate was soaked in 2.5% NaOH for 1 h at room temperature and then autoclaved at 121°C for various steaming time (30, 60, 90 and 120 min). Results revealed that residence time of 90 min at 121°C has strong effect on substrate, achieving a maximum cellulose content of 83%, delignification of 81% and hemicellulose content of 10.5%. Further SEM and FTIR spectroscopy confirmed structural modification caused by alkaline pretreatment in substrate. Maximum saccharification yield of 52.93% was achieved with 0.5% enzyme concentration using 2.5% substrate concentration for 8 h of incubation at 50°C. This result indicates that the above-mentioned pretreatment conditions create accessible areas for enzymatic hydrolysis.  相似文献   
6.
Pyrolysis of rice straw (RS), a popular method for producing biochar, effectively treats heavy metal(loid)-contaminated RS. Here, we carried out this process at different temperatures and investigated the deportment of heavy metal(loid)s and the property evolution of biochars. Also, the optimal pyrolysis temperature for Pb adsorption and immobilization was studied. We observed that increasing the temperature could volatilize the heavy metal(loid)s. Cd was the most volatile metal therein, followed by As, while Ni, Cu, and Pb were relatively refractory. More than 75% of the remaining heavy metal(loid)s were non-exchangeable fractions at 700 °C, significantly reducing the environmental risk during subsequent application. Meanwhile, higher pyrolysis temperature resulted in higher pH values, higher surface areas, and stronger Pb adsorption capacity of RS biochars. The maximum adsorption capacity (Qm) of biochars was in the order of BC300 (77.2 mg·g?1) < BC500 (137.2 mg·g?1) < BC700 (222.6 mg·g?1). Besides, high-temperature biochar could significantly reduce the vertical Pb migration. And BC700 increased the fraction of residual Pb from 39.7% to 44.0% in the soil under the acid rain leaching condition. Therefore, we propose that the heavy metal(loid)-contaminated RS biochar produced at 700 °C might be more suitable for the remediation of soil heavily polluted in the Pb-smelting area.  相似文献   
7.
基于硝酸-盐酸-氢氟酸消解体系,建立了马弗炉-微波消解-电感耦合离子体质谱(ICP-MS)法同时测定荞麦秸秆中的Cr、Cu、Ag、Mn、Fe、As、Ni、Pb等重金属含量测定方法。在微波消解的过程中,分别考察5种不同组合的混合酸体系及两种消解方法对荞麦秸秆中8种重金属测试结果的影响。实验结果表明,浓硝酸-浓盐酸-氢氟酸(6∶2∶2)混酸体系和马弗炉-微波消解样品前处理优于其他方法。在优化条件下,8种重金属加标回收率为91.2%~102%,相对标准偏差(RSD,n=5)为0.22%~4.7%,检出限为0.18~9.41μg/L。方法操作简便、快速、准确,结果可靠,能同时测定荞麦秸秆中8种重金属元素。  相似文献   
8.
以玉米秸秆稀酸水解液为阳极底物,用污水处理厂活性污泥为产电微生物菌源构建双室微生物燃料电池(MFC),采用三种不同方法改性阳极碳毡,并对其MFC产电性能进行研究。结果表明,以未改性碳毡(CC)、HNO_3酸解CC(HNO_3/CC)、壳聚糖改性CC(chitosan/CC)、PDADMAC/α-Fe_2O_3层层自组装改性碳毡(PDADMAC/α-Fe_2O_3/CC)的MFC的最大产电量分别为248、315、452和522 mV,最大功率密度分别为54.6、92.7、203.8和248.1 mW/m~2,COD的去除率分别为82.21%、81.46%、82.53%和86.44%。循环伏安曲线显示,PDADMAC/α-Fe_2O_3层层自组装改性的阳极碳毡具有较高的氧化还原电位。电化学阻抗谱图表明,PDADMAC/α-Fe_2O_3层层自组装改性碳毡的极化内阻最小,为7Ω。几种改性材料为阳极的MFC性能依次为PDADMAC/α-Fe_2O_3/CC壳聚糖/CCHNO_3/CC空白CC。  相似文献   
9.
The present study was carried out to develop an analytical method for simultaneously detecting and quantifying sulfoxaflor and its metabolites (X11721061, X11719474) in brown rice and rice straw using liquid chromatography–tandem mass spectrometry. The parent compound and its metabolites were extracted and purified using original ‘QuEChERS’ method with modification. The matrix-matched calibration curve of sulfoxaflor and its metabolites in both matrices achieved good linearity with determination coefficients (R2) ≥0.9944. The overall recoveries of sulfoxaflor at two fortification levels (rice: 0.2 and 1.0 mg/kg; rice straw: 0.4 and 2.0 mg/kg) ranged from 97.37% to 107.71% with relative standard deviations (RSDs) <5%. On the other hand, the recoveries of both metabolites (X11721061 and X11719474) at 0.1 and 0.5 mg/kg (rice) and 0.2 and 1.0 mg/kg (rice straw) were satisfactory with values ranging from 83.70 % to 112.60% with RSDs <8%. During storage at ?20°C, the analyte and its metabolites were stable for up to 87 days. The limits of quantification of 0.02 mg/kg were lower than the maximum residue limit (0.2 mg/kg) set by the Korean Ministry of Food and Drug Safety for brown rice. The method was successfully applied to paddy field treated with different programme schedules and a preharvest interval of 7 days was proposed based upon the current study. In sum, the developed method is accurate and reproducible for ensuring the reliable determination of sulfoxaflor (and its metabolites) in harvested rice grain and straw samples from the field. The residual level of parent compound does not seem to pose any hazardous effect and treated rice could be safely used for consumption.  相似文献   
10.
The metabolism of brassinosteroid leads to structural modifications in the ring skeleton or the side alkyl chain. The esterification and glycosylation at C-3 are the most common metabolic pathways, and it has been suggested that conjugate brassinosteroids are less active or inactive. In this way, plants regulate the content of active brassinosteroids. In this work, the synthesis of brassinosteroid 24-norcholane type analogs conjugated at C-3 with benzoate groups, carrying electron donor and electron attractant substituents on the aromatic ring, is described. Additionally, their growth-promoting activities were evaluated using the Rice Lamina Inclination Test (RLIT) and compared with that exhibited by brassinolide (used as positive control) and non-conjugated analogs. The results indicate that at the lowest tested concentrations (10−8–10−7 M), all analogs conjugated at C-3 exhibit similar or higher activities than brassinolide, and the diasteroisomers with S configuration at C-22 are the more active ones. Increasing concentration (10−6 M) reduces the biological activities of analogs as compared to brassinolide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号